

- > Flow of a 8 mm valve in a 6,5 mm footprint, without usual manufacturing constraints
- > One-screw mount
- Solder free / direct connection on PCB
- > Captive seals

Technical features

Medium:

Air, oxygen, neutral gases, 40 µm filtered

Operation:

Direct acting 2-way and 3-way valves, normally closed and normally opened

Operating pressure:

0 ... 2,5 bar

Flow:

See technical data - standard models

Leakage:

Internal leakage: 10-2 mbar l/s External leakage: 10-2 mbar l/s

Mounting:

Manifold with M3 mounting screw

Orifice:

See technical data - standard models

Response time:

Pneumatic response time (ON):

5 m

Pneumatic response time (OFF): 10 ms

Response time measured according to ISO 12238

Life expectancy:

50'000'000 cycles

Weight:

8 a

Ambient/Media temperature:

0° ... +50°C (+32°...+122°F)

Materials in contact with the

fluid: Body: PPS

Seals: NBR, FPM

Internal parts: stainless steel,

HNBR, FPM

Electrical details

Voltage:	24 V d.c.
Rating:	100 % E.D.
Voltage tolerance:	± 5 %
Power consumption:	0,8 W
Insulation restistance:	2 Mohm at 100 V d.c.
Protection class:	IP 51
Insulation class:	E180
Electrical connection:	PAD (0.4 µm galvanic gold over nickel)

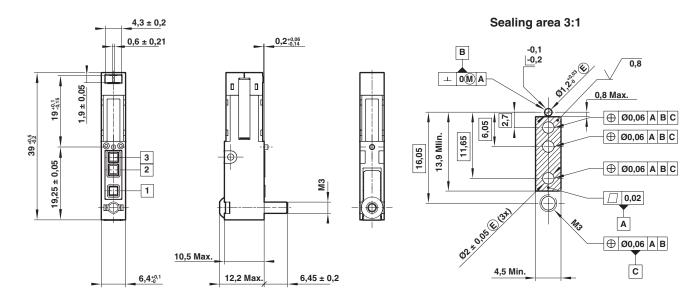
Following options on request

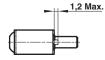
Pneumatic connection					
Electrical connection					
Mounting screw					
Coil orientation					

Technical data - Standard models

Symbol	Operation	Orifice (mm)		kv *1) (l/min)		Pmax (bar)	Seal	Seat	Model
		1 to 2	2 to 3	1 to 2	2 to 3				
12 210	2/2 NC	0,8	-	0,2	-	2,5	NBR	HNBR	15-211P101-HH
	2/2 NC	0,8	-	0,2	-	2,5	FPM	FPM	15-211P101-H1
	2/2 NC	0,9	-	0,26	-	0,8	NBR	HNBR	15-211P1009HH
	2/2 NC	0,9	-	0,26	-	0,8	FPM	FPM	15-211P1009H1
12 10 W	3/2 NC	0,8	0,8	0,2	0,26	2,5	NBR	HNBR	15-311P101HH
	3/2 NC	0,8	0,8	0,2	0,26	2,5	FPM	FPM	15-311P101-H1
	3/2 NC	0,9	0,8	0,26	0,26	0,8	NBR	HNBR	15-311P1009HH
	3/2 NC	0,9	0,8	0,26	0,26	0,8	FPM	FPM	15-311P1009H1

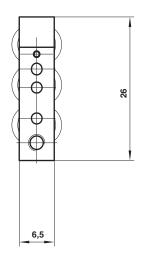
*1) Cv = 0.07 kv

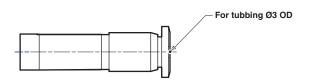


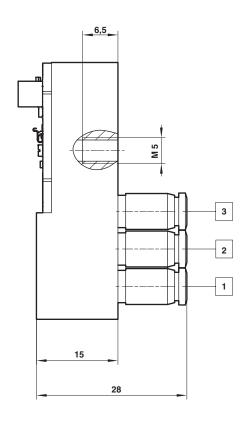


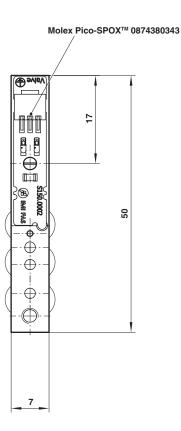
Accessories

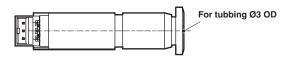
Dimensions




Test manifold S151.0034




Dimensions in mm Projection/First angle



Test manifold S151.0013

Warning

These products are intended for use in air, oxygen and neutral gas systems only. Do not use these products where pressures and temperatures can exceed those listed under "Technical features/data". Before using these products with fluids other than those specified, for non-industrial applications, life-support systems, or other applications not within published specifications, consult IMI Precision Engineering, Fluid Automation Systems s.a.

Through misuse, age, or malfunction, components used in fluid power systems can fail in various modes. The system designer is warned to consider the failure modes of all component parts used in fluid power systems and to provide adequate safeguards to prevent personal injury or damage to equipment in the event of such failure.

System designers must provide a warning to end users in the system instructional manual if protection against a failure mode cannot be adequately provided.

System designers and end users are cautioned to review specific warnings found in instruction sheets packed and shipped with these products.